The following is excerpted from
Plant Intelligence and the Imaginal Realm, recently published by Inner Traditions.Bose’s overall conclusion that plants have an electromechanical pulse, a nervous system, a form of intelligence, and are capable of remembering and learning was not well received in its time. A hundred years later, concepts of plant intelligence, learning, and long-distance electrical signaling in plants have entered the mainstream literature. . . . Nevertheless, the concept of plant intelligence [still] generates a considerable amount of controversy. [1]
But really, when you think of it,we have a lot more in common with a plant than a car.Mechanomorphism—the projection onto Nature of a mechanical nature—is a lot more ridiculous than the idea of plant intelligence ever could be.
I respect McClintock’s work; I just don’t like her mysticism
His name was Charles Darwin.(Oops!)
It is hardly an exaggeration to say that the tip of the radicle thus endowed [with sensitivity] and having the power of directing the movements of the adjoining parts, acts like the brain of one of the lower animals; the brain being seated within the anterior end of the body, receiving impressions from the sense-organs and directing the several movements. [4]
But, that can’t be true. They just sit there when we kill them(yeah? and no matter how fast a human runs, the lion still finds him tasty.)
Plants and Perception
The new view, by contrast, is that plants are dynamic and highly sensitive organisms, actively and competitively foraging for limited resources both above and below ground, and that they are also organisms which accurately compute their circumstances, use sophisticated cost-benefit analysis, and that take defined actions to mitigate and control diffuse environmental insults. Moreover, plants are also capable of a refined recognition of self and non-self and this leads to territorial behavior. This new view considers plants as information-processing organisms with complex communication throughout the individual plant. Plants are as sophisticated in behavior as animals but their potential has been masked because it operates on time scales many orders of magnitude longer than that operation in animals. . . . Owing to this lifestyle, the only long-term response to rapidly changing environments is an equally rapid adaptation; therefore, plants have developed a very robust signaling and information-processing apparatus. . . . Besides abundant interactions with the environment, plants interact with other communicative systems such as other plants, fungi, nematodes, bacteria, viruses, insects, and predatory animals. [6]
such as extensive leaf damage from spider mites which will stimulate the plant to focus more specifically
It is actually a kind of dreamingAnd not the kind of dreaming you are thinking about eitherBut a different kind of dreaming entirely(It’s like the dreaming you do when you are reading this book)That dreaming is the central core of what this book is aboutIt is the kind of dreaming that Goethe was engaged inWhen he learned about plant metamorphosisAnd Luther Burbank when he looked deep into the plantAnd saw every environment its ancestors had ever lived inAnd the same kind that Barbara McClintock didWhen she watched individual chromosomes in corn shift their structureIt is the same state of mind that writers enter when they create worldsIt is also how Gaia dreams the world into beingAnd it is the kind of dreaming you can do, too, if you wish,If you decide to walk through the doors of perceptionAnd find out what is on the other side
No such simplicity of circumstance is available to an individual wild plant, which in meeting an almost infinite variety of environmental states must construct individual responses to improve its own fitness. No genome could contain the information that would provide an autonomic response to every environmental state. And even cloned individuals do not exhibit identical responses. [10]
The artificial may be deterministic and reversible. The natural contains elements of randomness and irreversibility. This leads to a new view of matter in which matter is no longer the passive substance described in the mechanistic world-view but is associated with spontaneous activity.[11]
It is now known (1) that various steps in metabolism act like many Boolean compute logic gates such as AND, OR, and NOR and are termed chemical neurons, (2) that these chemical neurons can act as pattern-recognition systems, (3) that proteins can act as computational elements, and (4) that protein phosphorylation using about 1,000 protein kinases in both animals and plants provides for enormous numbers of complex elements of control, switching mechanisms and including both positive and negative feedback interactions. . . . Even in simple networks collective computational properties arose with parallel processing and extensive numbers of associative memories emerged as attractors occupying part of the network. . . . The cell in which zillions of molecular events occur at a time computes in parallel fashion, just like a brain. . . . The cellular network perceives continual environmental variation through a multiplicity of receptors. . . . Such networks learn either by increasing the synthesis of particular constituents or by changing the affinity between particular network steps by post-translational modification. Memory is simply the retention with time of the enhanced pathway of information flow and can be accessed by other pathways through cross talk. Cellular networks capable of these properties are entitled to be called intelligent. [13]
The Plant Brain
This kind of human misorientation is not uncommon. A well known environmental activist once told me, “Old growth forests are monocultures; there is very little diversity of life in them.” And many people have used that thinking to support the cutting of old-growth forests. But it turns out that he was (as are so many others) guilty of two-dimensional thinking. If you go upward, into the canopy of the forest, you will find one of the most complex and diverse ecosystems on Earth. There are plants and insects and animals there that make the diversity found in younger forests seem simplistic in comparison. And if you go into the soil surrounding those trees roots, you will find the same kind of complex community of life. Plants, in fact, construct within themselves a three-dimensional gestalt of their local space that includes not only the three- dimensional space of the rhizome world in which the root/brain exists but also of the canopy world that comes into being as the plant matures. Plants, in fact, negotiate both their form and behavior through a three-dimensional maze space—a topological surface that is continually changing in shape—that is constrained by the energy/movement of multitudes of other actors. And within those zones a diversity of life emerges that could not exist otherwise. Neither the Earth nor plants are limited to two-dimensional thinking it seems, just people.
what we think of as “up,” isn’t
Although plants are generally immobile and lack the most obvious brain activities of animals and humans, they are not only able to show all the attributes of intelligent behavior but they are also equipped with neuronal molecules, especially synaptotagmins and glutamate/glycine-gated glutamate receptors. Recent advances in plant cell biology allowed identification of plant synapses transporting the plant-specific neurotransmitter-like molecule auxin. This suggests that synaptic communication is not limited to animals and humans but seems widespread throughout plant tissues. [14]
Learning and memory are the two emergent (holistic) properties of neural networks that involve large numbers of neural cells acting in communication with one another. But, both properties originate from signal transduction processes in individual cells. Quite remarkably, the suite of molecules used in signal transduction are entirely similar between nerve cells and plant cells. . . . Learning results from the formation of new dendrites, and memory lasts as long as the newly formed dendrites themselves. The neural network is phenotypically plastic and intelligent behavior requires that plastic potential. Plant development is plastic too and is not reversible; many mature plants can be reduced to a single bud and root and regenerate to a new plant with a different structure determined by the environmental circumstances. [15]
I still remember seeing a great, ancient maple send shudder after shudder through its trunk one year—for days on end. The entire tree was undulating; I’d never seen or felt anything like it before. Some dimension of the world that I had never encountered before was intruding itself into my experience. It literally felt like the underpinnings of my world view were crumbling. It seemed as if the tree were having an epileptic seizure, something far outside my experience of trees. Then, with a great crash one day, a single giant, diseased limb came hurtling down from the canopy, at which point the shudders ceased. In a flash of insight then, I understood that trees self-prune, that they self-caretake, that I had only the barest understanding of the plant world and finally grasped Einstein’s observation that “we still do not know one thousandth of one percent of what nature has revealed to us.”
Old growth plants then begin to take on a much different character than their younger offspring. There are states of being that only come into play with age, and with the extensive development of expanded neural fields; the neuronal structure in an ancient redwood or old growth Artemisia absinthium is different from that in younger plants . . . so are the memories and life experiences held within that neuronal structure. Plants become wise, too, as they age. We are not the only ones capable of it. You can literally feel the difference such maturity brings in encountering old growth trees—the young just don’t have it.
harbor brain-like units of the nervous system of plants. The number of root apices in the plant body is high, and all ‘brain units’ are interconnected via vascular strands (plant neurons) with their polarly-transported auxin (plant neurotransmitter), to form a serial (parallel) neuronal system of plants. From observation of the plant body of maize, it is obvious that the number of root apices is extremely high. . . . This feature makes the ‘serial plant brain’ extremely robust and the amount of processed information must be immense. [16]
So, that carrot?It was murdered, yes.
and it had a hangover the next day
This really should not be surprising. The neurochemicals in our bodies were used in every life-form on the planet long before we showed up. They predate the emergence of the human species by hundreds of millions of years. They must have been doing something all that time, you know, besides waiting for us to appear.
Notes:
Source:
http://www.wakingtimes.com/2014/06/10/plant-intelligence/
Leave a Reply